Divide. Write the quotient in lowest terms. 3\dfrac{1}{8} \div 1\dfrac23 = 3 8 1 ? ÷1 3 2 ? =3, start fraction, 1, divided by, 8, end fraction, divided by, 1, start fraction, 2, divided by, 3, end fraction, equals

Accepted Solution

Answer: [tex]1\dfrac{7}{8}[/tex]Step-by-step explanation:The given expression is[tex]3\dfrac{1}{8} \div 1\dfrac{2}{3}[/tex]We need to find the quotient in lowest terms.Simplify the mixed fractions.[tex]3\dfrac{1}{8}=\dfrac{3*8+1}{8}\Rightarrow \dfrac{24+1}{8}=\dfrac{25}{8}[/tex][tex]1\dfrac{2}{3}=\dfrac{1*3+2}{3}\Rightarrow \dfrac{3+2}{3}=\dfrac{5}{3}[/tex]The given expression can be written as[tex]\dfrac{25}{8}\div \dfrac{5}{3}[/tex][tex]\dfrac{25}{8}\times \dfrac{3}{5}[/tex]Cancel out common factors.[tex]\dfrac{5\times 3}{8}[/tex][tex]\dfrac{15}{8}[/tex][tex]1\dfrac{7}{8}[/tex]Therefore the quotient in lowest terms is [tex]1\dfrac{7}{8}[/tex].